Small-molecule screening campaigns of model bacteria have been conducted extensively in biotechnology and pharmaceutical companies to search for novel compounds with antibacterial activity. Recently, there has been increasing interest in running such high-throughput screens within academic settings to answer questions in biology. In this respect, whole-cell screening has the particular advantage of identifying compounds with physical and chemical properties compatible with microbial cell permeation, thereby providing probes with which to study diverse aspects of microbial cell physiology and biochemistry. The focus of this chapter is to describe a general method of running a high-throughput screen against a model bacterium to identify small molecules with growth inhibitory activity. Once the primary bioactives have been identified, the determination of their dose-response relationships with the target microbe further characterizes their growth inhibitory effect.


Zlitni S, Blanchard JE, Brown ED.


Methods Mol Biol. 2009;486:13-27. doi: 10.1007/978-1-60327-545-3_2.